Chaos terrain, storms, and past climate on Mars

نویسندگان

  • Edwin S. Kite
  • Scot Rafkin
  • Timothy I. Michaels
  • William E. Dietrich
  • Michael Manga
چکیده

[1] We model the atmospheric response to a chaos‐forming event at Juventae Chasma, north of Valles Marineris, Mars, using the Mars Regional Atmospheric Modeling System (MRAMS). Interactions between lake‐driven convergence, topography, and the regional wind field steer lake‐induced precipitation to the southwest. Mean snowfall reaches a maximum of 0.9 mm/h water equivalent (peak snowfall 1.7 mm/h water equivalent) on the SW rim of the chasm. More than 80% of vapor released by the lake is trapped in or next to the lake as snow. Radiative effects of the thick cloud cover raise mean plateau surface temperature by up to 18 K locally. We find that the area of maximum modeled precipitation corresponds to the mapped Juventae plateau channel networks. At Echus Chasma, modeled precipitation maxima also correspond to mapped plateau channel networks. This is consistent with the earlier suggestion that Valles Marineris plateau layered deposits and interbedded channel networks result from localized precipitation. However, snowpack thermal modeling shows temperatures below freezing for the 12 mbar CO2 atmosphere used in our MRAMS simulations. This is true even for the most favorable orbital conditions, and whether or not the greenhouse effect of the lake storm is included. Moderately higher CO2 pressures, or non‐CO2 greenhouse forcing, is very likely required for melting and plateau channel network formation under a faint young Sun. Required warming is ≤10 K: global temperatures need not be higher than today. In these localized precipitation scenarios, the rest of the planet remains dry.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Periodic Climate Change on Mars: Review of Evidence and Effects

The polar regions of Mars preserve, in both their layering and their topography, a record of recent climate changes. Because of the coincidence of the growth of the northern seasonal cap with global dust storms, dust may be currently accumulating on the northern cap, but conditions at the poles will alternate with the precessional cycle. Deposition is also modulated by changes in eccentricity a...

متن کامل

Difference in the wind speeds required for initiation versus continuation of sand transport on mars: implications for dunes and dust storms.

Much of the surface of Mars is covered by dunes, ripples, and other features formed by the blowing of sand by wind, known as saltation. In addition, saltation loads the atmosphere with dust aerosols, which dominate the Martian climate. We show here that saltation can be maintained on Mars by wind speeds an order of magnitude less than required to initiate it. We further show that this hysteresi...

متن کامل

Cyclones, tides, and the origin of a cross-equatorial dust storm on Mars

[1] We investigate the triggering mechanism of a crossequatorial dust storm observed by Mars Global Surveyor in 1999. This storm, which had a significant impact on global mean temperatures, was seen in visible and infrared data to commence with the transport of linear dust fronts from the northern high latitudes into the southern tropics. However, other similar transport events observed in nort...

متن کامل

Influences of a shift in North Pacific storm tracks on western North American precipitation under global warming

Recent global climate model simulations for the IPCC Fourth Assessment report show a realistic North Pacific storm track and Aleutian Low for the present-day climate conditions. Under climate change, the storm track and Aleutian Low move northward and intensify. These changes shift precipitation northward along the Pacific coast of North America. In particular, precipitation is intensified over...

متن کامل

Dust storms originating in the northern hemisphere during the third mapping year of Mars Global Surveyor

Data from the third Mars Global Surveyor (MGS) mapping year (MY 26, 2003–2005) are used to investigate dust storms originating in the northern hemisphere. Flushing dust storms, which originate as frontal dust storms at the northern polar vortex edge and propagate southward through topographic channels, are observed immediately before and after a quiescent period that occurs around the northern ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011